

Space Technology 5 Mission CLUSTER SWT MEETING March 4, 2002

J.A. Slavin ST 5 Project Scientist

New Millennium Program Overview

Earth Observing 3 (EO3) 2004

A cross-Enterprise program to identify and flight validate breakthrough technologies that will significantly benefit future Space Science and Earth Science missions.

* Actual Launch Date

Flight Validation of Breakthrough Technologies to Benefit Future Space and Earth Science Missions

Breakthrough technologies

- Enable new capabilities to meet Earth and Space Science needs
- Reduce costs of future missions

Flight validation

- Mitigates risks to first users
- Enables rapid technology infusion into future missions

ST-5 Technologies

ST 5 Project Concept

Miniature Spacecraft

Systems Design Integration and Test Technologies

Candidate Spacecraft Technologies

5V bus - 1/4V logic

Li-Ion batteries

Miniature transponder

Miniature Thrusters

Multi-functional structure

Variable emittance coatings

Constellation Control, Coordination, and Operations Architecture

Ground system autonomy

Low cost operations

TECHNOLOGY VALIDATION INFUSION

J.A. Slavin ST 5 Project Scientist

ST-5 Mission Goals

The ST-5 mission has the following level-one mission requirements:

- 1. Design, develop, integrate, and operate a full service 20-kg class spacecraft through the use of NMP assigned technologies;
- 2. Demonstrate the ability to support accurate, research quality scientific measurements using this class of spacecraft;
- 3. Design, develop, and operate multiple spacecraft to act as a single constellation rather than as individual elements.

ST5 TECHNOLOGIES

Li-ion battery

Variable emittance thermal coating

X-band transponder

Autonomous ground operations

Ultra-low power electronics

Micro-thruster

ST5 – IMPLICIT TECHNOLOGIES

Top Bushings for Deck components Edge inserts for Side Wall (~48 plcs)

Hard Point LV I/F (4 locations Side Wall 10.58" High;

System Verification/Validation Overview

Micro-Satellite Design and Build

"Design, development, integration, test and operation of a full service 20 kg class spacecraft through the use of multiple new technologies"

Research-Quality Spacecraft

"The ability to achieve accurate research-quality scientific measurements using a 20 kg-class spacecraft"

Constellation Mission

"The design, development, and operation of multiple spacecraft to act as a single constellation rather than as individual elements"

- Constellation Mission
 - Coordinating Mission Geometry
 - Processing of Data Streams from Multiple Spacecraft
- Autonomous Constellation Management
 - SatTrack Technology
- "Lights Out" Ops

- Full Functional Spacecraft

- Spacecraft Mass Properties
- Appendage Deployments
- Pointing Performance
- Radiometric Performance
 - X-Band Technology
- Secondary Payload Launch
 - Volume Limitations
 - Separation System
- Radiation Environment
 - Time Knowledge
 - Platform for In-situ Measurements
 - Vehicle Magnetic Sig
 - Support "Science Grade" Magnetometer
 - Autonomous Cooperative Data Collection (Science Event Warning)

Science Validation

Flight validate:

- •Miniaturized, research-grade vector magnetometer
- •ST-5 capability to act as a platform for taking in situ magnetic field measurements
- •Autonomous operations and response to science events
- •Constellation-level cooperative data collection during science events

Jul '99: GSFC ST-5 Proposal submitted

Aug '99: GSFC Proposal accepted

May '00: Systems Concept Review

Feb '01: Science Validation MAG selected

June '01: Preliminary Design Review

Nov '01: HQ Confirmation

June '02: Critical Design Review

May '04: Launch Readiness Date

SEC Roadmap Constellation Missions

ST 5 Project Scientist

ST-5: Enabling the Future - LWS 2009

J.A. Slavin **ST 5 Project Scientist** 13 - 13

7 - 14

ST-5: Enabling the Future - MagCon 2011

ST-5 SECAS Q79/203/GPMC **Project Scientist**

J.A. Slavin

14 - 14

ST-5 Benefits to NASA

- Pathfinder for all missions requiring highly capable, small spacecraft whether strategic (e.g., LWS/IT/RB and STP/MagCon) or selected for development through the Explorer, Discovery and Earth Probes Programs;
- Pathfinder for constellation mission operations, autonomy, communications, manufacturability, costing, scheduling and reliability;
- Flight validation vehicle for miniaturized subsystems (e.g., sun sensor, X-Band transponder, CCNT, magnetometer, etc.);
- Pathfinder for secondary launches as a means of reducing cost for near-earth scientific spacecraft (e.g., LWS Geospace monitors).